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Abstract 
______

We address the problem of finding a 1-1 mapping of the vertices of
a binary tree onto those of a target binary tree such that the son of a
node on the first binary tree is mapped onto a descendent of the image
of that node in the second binary tree. There are two natural measures
of the cost of this mapping, namely the dilation cost i.e. the maximum
distance in the target binary tree between the images of vertices that "
are adjacent in the original tree. The other measure, ezpansion cost, is
defined as the number of extra nodes/edges to be added to the target
binary tree in order to ensure a 1-1 mapping. We describe an efficient
algorithm to find a mapping of one binary tree onto another. We show
that it is possible to minimize one cost of mapping at the expense of
the other.

This problem arises when designing pipelined Arithmetic Logic Units
for special purpose computers. The pipeline is composed of ALU chips
connected in the form of a binary tree. The operands to the pipeline
can be supplied to the leaf nodes of the binary tree which then process
and pass the results up to their parents. The final result is available
at the root. As each new application may require a distinct nesting
of operations, it is useful to be able to find a good mapping of a new
binary tree over existing ALU tree. Another problem arises if every
distinct required binary tree is known beforehand. Here it is useful to
hardwire the pipeline in the form of a minimal supertree that contains
all required binary trees.

This research was supported in part by NASA Contract NAS1-18107
while the author was resident at the Institute for Computer Applications
in Science & Engineering (ICASE), NASA Langley Research Center.



1. INTRODUCTION

We address the problem of finding a 1-1 mapping of

vertices of a binary tree onto those of a target binary tree

such that the son of one binary tree is mapped onto a

descendent of the image of that node in the other binary tree.

There are two natural measures of the cost of this mapping,

namely the dil.ation-cost i. e. the maximum distance in the

target binary tree between the images of vertices that are

adjacent in the other graph. The other measure i. e. the

expansion-cost, is defined as the number of extra nodes/edges

to be added into the target binary tree in order to ensure a

1-1 mapping.

This problem arises while designing the Arithmetic Logic

Unit for a proposed special purpose computer 1], & [2]. In

that computer, Navier-Stokes equations are solved using an ALU

pipeline.The pipeline is composed of ALU chips connected in

the form of a binary tree. Each chip has two data inputs for

the two operands and one data output for the processed result.

The operands to the pipeline can be supplied to the leaf or

intermediate chips of the binary tree, which then process and

pass the result up to their parents. The final result is

available at the output of the root node of the binary tree.

The solution of each Navier-Stokes equation may require a

distinct interconnection of the chips.

Once an ALU pipeline in the form of a binary tree is

hardwired, it becomes essential to find the mapping of a new

binary tree, corresponding to an application not initially

considered in the design of the pipeline, onto the ALU

pipeline. The following questions regarding the mapping of the

new binary tree onto the ALU pipeline, need to be answered:

1. Is it possible to find a mapping with zero dilation-cost
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without altering the hardware structure of the ALU

pipeline?

a. If a mapping with zero dilation-cost does not exist, is

it possible to find a mapping with minimal dilation-cost

but again zero expansion-cost? A mapping with non zero

dilation-cost means that the son of a node of the new

binary tree is assigned to a descendent Cinstead of a

son) of the image of that node in the target binary tree.

Under such conditions some additional nonleaf nodes of

the pipeline, will be required to pass the operands upto

their parents without any processing. Such an assignment

will increase the number of stages in the pipeline but

this may have little impact if long vectors are being

processed and is, in any case, preferable to rewiring the

pipeline.

3. If the dilation-cost of the mapping found in C2) is

prohibitively large, what will be the expansion-cost of

the ALU pipeline in order to make the dilation-cost

acceptable?

A new problem regarding the ALU pipeline arises if every

distinct binary tree, corresponding to each Navier-Stokes

equation to be solved, is known before hand. Under such

conditions, it is useful to hardwire the pipeline in the form

of minimal super tree which contains all required binary

trees. This exercise will minimize the number of costly ALU

chips as well as save the cost of rewiring the pipeline.

An almost identical problem arises in the field of

parallel/pipelined processing where the modules of a tree

structured parallel program are to be assigned over the

processors of a tree machine. The above mentioned constraint

Cthat the son of each node of the program binary tree should
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always be assigned to a descendent of the image of that node

in the processor binary tree) will greatly help in reducing

communication & synchronisation overheads. In case the

communication cost of I-i mapping of the nodes of the program

binary tree onto the nodes of the processor graph is too high,

we are left with two options:

Cl) Add extra nodes to the processor graph in order to

reduce the communication overhead;

C2) Assign more than one program nodes to a processor so

that the reduced program binary tree nicely fits the

intended tree machine and the communication cost is

reduced.

Prior research in similar fields is conducted by many

researchers. Bokhari [3] has defined the mapping probLem and

developed a heuristic in order to maximize the cardinaity of

mapping i. e. the number of pairs of communicating modules

that fall on pairs of directly connected processors in an

eight nearest neighbour array. Iqbal (4] has designed a

heuristic algorithm which works especially well for the

mapping of binary trees onto binary trees. Chung et al. [5)

showed that in order to be able to embed any N-node binary

tree onto a complete binary tree with dilation-cost=l, the

expansion-cost of the target binary tree must be proportional

to NLogN /Z2. Hong et al. [6 showed that there is a generic

binary tree onto which all binary trees are embeddable with

dilation-cost 0C1) and expansion-cost OC') for some fixed

constant c.

Most of these researchers, while mapping/embedding a

graph onto a target graph, do not work under the constraint

that the son of a node of a graph should always be assigned to

a descendent of the image of that node in the target graph. It
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should be understood that while the above constraint is

optional Cbut certainly useful) in the parallel processing

environment, it is a must for the mapping of a binary tree

onto an ALU pipeline.

In this paper, we describe a mapping algorithm which

can be used to find a 1-1 mapping of the nodes of a rooted

binary tree onto the nodes of a target binary tree, under the

constraint discussed earlier in this section. We study the

cost of this mapping in terms of dilation-cost and

expansion-cost, and show that it is possible to minimize one

of these costs only at the expense of an increase in the other

cost.

In Section 2, we define certain terms relevant to our

research. A mapping algorithm is described in Section 3. In

Section 4, we use a similar algorithm to find a mapping of a

binary tree onto a given ALU pipeline with different

dilation-costs and expansion-costs. We also describe a scheme

in this section that can be used to find a minimal super tree

which contains an arbihrary number of binary trees, provided

we impose certain restrictions on the structure of the super

tree. The paper concludes with a discussion of our results in

Section 5.
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2. DEFINITIONS

diLated-mappne A 1-1 mapping of the nodes of a given binary

tree onto the nodes of a target binary tree

under the following constraints:

1. The root node of the given binary tree is

assigned to the root node of target binary

tree.

2. Each son of node t in the given binary

tree is assigned onto an existing descendent

of the image of i in the target binary tree

(see Fig. ID. The edgeC., sonCt.) of the

given binary tree is said to be dilated by

an amount equal to the distance in the

target binary tree between the images of

node i and sonC . CNote that the

expansion-cost of a dilated-mapping is

always zero)

dep t hCh,) distance of node X from the root. The value

of depthCr( r -=0. The maxi mum value of

depthCk<) for i_< im is denoted by d

LLC.) is true if a dilated-mapping of the left

tree of node i exists onto the left tree of

image of i, and false otherwise.

LRC L is true if a dilated-mapping of the left

tree of node i exists onto the right tree of

the image of i, and false otherwise.

RRCt is true if a dilated-mapping of the right

tree of node i exists onto the right tree of

the image of t, and false otherwise.

RLC C) is true if a dilated-mapping of the right
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tree of node i exists onto the left tree of

image of t, and false otherwise.

dtLaLe-LeftCL) is true if it is impossible to determine

whether a di l ated-mappi ng of the left

treeCO) onto left treeCimageCL)) exists or

not unless the edgeCt, ieftsonCO)) is

dilated and the left treeCi) is mapped onto

the left treeCleftsonCimageCL))), and false

otherwise. Thus it will ba false if either a

dilated-mapping of the left treeCi) exists

onto the left treeCimageCt)) without

dilating the edgeCt, leftsonCL)), or a

dilated-mapping of the left tree<t) does not

exist onto the left treeCimageCO)) even if

the edgeCi, leftsonC!)) is dilated by an

arbitrary amount.

d Late-rthtC) is true if it is impossible to determine

whether a dilated-mapping of the left

treeCiD onto left treeCimageCt)) exists or

not unless the edgeCt, leftsonCO)9 is

dilated and the left treeCO is mapped onto

the right treeCleftsonCimageCi))), and false

otherwise. Thus it will be false if either a

dilated-mapping of the left treeCD cxists

onto the left treeCimageC9)) without

dilating the edgeCi, leftsonCt)M, or a

dilated-mapping of the left treeCt) does not

exist onto the left treeCimageCt)) even if

the edgeCi, leftsonCM) is dilated by an

arbitrary amount.
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3. AN ALGORITHM TO FIND A DILATED-MAPPING

We will first describe and prove a number of theorems

which will help us in designing the basic algorithm. Given the

flags: LLCIetsonC _), RRCLeftsoncOD), LRC ZeitsonCt)), and

RLCleftsonCi)i, Theorem 1 describes conditions under which the

flag LLCt) is true. The conditions under which the flag LLCt)

is false are discussed in Theorem 2. In Theorem 3, we discuss

conditions under which it is impossible to determine whether

the flag LLCL) is true or false unless the edgeCi.

leftsonCiDD is dilated.

3. 1. THEOREM 1

The flag LLCi) is true Cbut not necessarily false

otherwise) if LLCleftsonCi) RRCLeftsonCt)) +-LRCLeftsonCi.))*

RLCLeftsonC) ) is true. Similarly RR(i) is true Cbut not

necessarily false otherwise) if LLC-rhtsonCi.)

RRCrtihtsonCit)) + LRCriAhtsonCt)) RLCrihtsonCi.9) is true.

Proof

The AND of LLieftsonC)-) and RRCLeftsonCiD) is true if

it is possible to find a dilated-mapping of the left tree as

well as the right tree of the left son of node i onto the

respective left tree and right tree of imageCL). This implies

that a dilated-mapping of the left tree of node t onto the

left tree of imageCiD exists and thus LLCi) is true.

The AND of LRCleftsonC.)) and RLCleftsonC)_) is true if

one can find a dilated-mapping of the left tree of the

leftsonCt) onto the right tree of the leftsonCimageCi)), and

of the right tree of the leftsonCi) onto the left tree of the

leftsonCimageCi)). This implies that a dilated-mapping of the

left tree of node i onto the left tree of imageCt) exists and

thus LLit) is true.o
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The conditions under which LLCL) is true, are shown in

Table 1. It is understood that under these conditions the flag

LLCi>) is true without Cfurther) dilating the edgeCi,

leftson(O)), and thus the flags dilate-left and dilte-right

are both false.

3. 2. THEOREM 2

The flag LLC) is false Cbut not necessarily true

otherwise) if LLCrtghtsonC)3 L RCLeftson£C)) +

RRCLe/tsortc) RLCieftsonC)) is true. Similarly RRi ) is

false Cbut not necessarily true otherwise) if LLCrLehtsonC.)D

LRCriLhtsonCiD) + RRCrL'htsonC )) ,LCri.htsonCi)) is true.

Proof

The AND of LLC~eftsorC)) and LRCLe/tsonCL)) is true if

it is impossible to find a dilated-mapping of the left tree of

leftsonCL) onto the left or right tree of leftsonCimageC)).

If a dilated-mapping of the left tree of leftsonCO) does not

exist onto the left or right tree of leftsonCimageCO)), then a

dilated-mapping of the left tree of node i can also not exist

and hence LLCL) is fatse. Similarly it can be argued that if

RRClejtsonC)D AND RLCLeftsonCL)) is true then the flag LLC-i)

is fatse.o

The conditions under which the flag LLCi.) is false. are

illustrated in Table 1. It is important to note from the table

that the flag LLCt) is false if a dilated-mapping of the left

tree of node i does not exist onto the left tree of imageCi)

even if the edgeCi, leftsonCM)) is dilated by an arbitrary

amount. Thus the flags dilate-left and dilate-right are both

fatse.

8



TABLE 1

LLCleftsonCi)) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

RRC LetsonCD) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

LRCIeftson(iX-3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

RLCle/tsonCi9) 0 1 0 1 0 1 C 1 0 1 0 1 0 1 0 1

LLCi) 0 0 0 1 0 0 ? 1 0 ? 0 1 1 1 1 1

ditate-LeftCt) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

diLate-riehtCt) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
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3. 3. THEOREM 3

d Late-eftC) =LLCLeftsonCtL)) LRC efson D)

RRCLeftsornCt)) - RLCLeftsonCL )

d£itte-rightCi) L ieitson(L)) LRCieftsorCt))

RRCie/t5onCL)) RiC~e/tsonCL ))

Proof

The conditions under which dilate-left/dilate-right is

true or false are illustrated in Table 1. Note that the flags

dilate-left and dilate-right are both faLse if LLCL) is either

true without Cfurther) dilating the edgeCt, leftsonC)), or a

dilated-mapping of the left treeCt) does not exist onto the

left tree of the imageCO) even if the edgeCt, leftsonC)) is

dilated by an arbitrary amount.

The flag LLCleftsorC).) is true if a dilated-mapping of

the left tree of leftsonCt) exists onto the left tree of

1 eftsonC i mageC )) , while RLCLef sonC )-) is true if a

dilated-mapping of the right tree of the leftsonCO exists

onto the left tree of the leftsonCima£ e<t)). The flags

LRC eftsonCi)) and RRCLeftsonC9.) are both false when a

dilated-mapping of the left tree of node v onto the left tree

of imageCL) does not exist, provided the edgeCt, leftsonC))

is not dilated. Thus whenever the flag dilate-left is true,

there exists a possibilty of finding a dilated-mapping of the

left treeCt) if the edgeCL, leftsonC)) is dilated and the

left tree of node i is mapped onto the left tree of the

1 eftsonCi mageC i)). 3

It is important to note that only one flag Cdilte-left or

dilate-right) can be true at a time. Thus dilate-left

Cdilate-right) is true if there exists a possibility of LLCi.)

becoming true, provided the left tree of node i is mapped onto

the left tree (right tree) of leftsonCimageCt)).
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34. THE ALGORITHM

Find a trivial mapping of the given binary tree C treel.)

onto the target binary tree Ctree2.). For each node i at depth

Cd mai- 2), the fl1ags: LLC L eJ tso?(t1D), RRC~e/tSnCir&_),)

LRCl~eftsrn'.C)), and RLCieftscr('_z)), can easily be found by

inspection. The flag LLCi.) can then be found using the

following proce.4ure:

Given LLCieftsonCL)', RRCieftisonOD_)), LRCteftson(i.)), and

RLC~eftsor&)). find if LLCL) is true Cuse Theorem 1) or fczLse

Cuse Theorem 23. If LLCi-) is neither true nor fatse then

either dilate-left or dilate-right Cbut not both) will be true

CTheorem 3). Dilate the edgeCt, leftsonCt)) and assign the

left tree of node t onto the left tree of the

leftsonCimageCi)) if dilate-left is true, and onto the right

tree of leftsonCimageC)), if dilate-right is true. Again work

out the value of LLCt) from the new values of LLC~eftsonCt)),

RRCLeftSor~t)), L RC Lef tson,,' ) ) , and RL C Ief tsonC t ) ). I f

dilate-left or dilate-right is still true then further dilate

the edge(L. leftsonCt)) and repeat this process until LLCt.)

becomes either true (without further dilation) or it becomes

faLse Cwith an arbitrary amount of dilation).

The flags: LLCrightson('i)), RRCriehtsornCL)),

LRCrightsonC)), and RL~rihtson~t).) can also be found by

inspection and RRCi.) can then be determined.

Now interchange the left tree of each node i with the

right t ree and again find the fl~ags, LLCLeftsonCt)),

RRC1eftsorti)), LRCieftsoonCt)), and RLCLeftsonCL)), by

inspection. From these flags work out the value of LRCiD). The

flag RLC,':) can be found in a similar manner.



Once we have the values of LLCi), RRCt), LRCt), and RLCi

for each node t at depth Cd - ) ,the value of these flags

for each node at depth Cd - 3), can be found in a similar

"n1X1

manner. Keep going up in tr-eel until we find the

flags: LLCrootI), RRC rootl), LRCrool-l), and RLCrootl). If

LLCrootl>PRRCrooll)4LRCrootlRLiCrootl ) is true then a

dilated-mapping of treel onto tree2 exists.

3. 5. DISCUSSION

1. For any node h of treel, the flag LLCh) is a function of

four flags: LLCLef tsonC-)_), RRC Le &tsonch).) ,

LRCIeftsorCh)), and RLCieftsoC<X_. In order to find if

LLCkh) is true Cwithout further dilation) or !atse Cwith

an arbitrary amount of dilation), the edgeCJh, leftsonCk))

is dilated at the most as many times as Cd - d ).1flxZ maxi

For each dilation of the edge, the above mentioned four

flags are to be evaluated. Thus, in order to find the

flag LLC')t, the four flags have to be found out Cd -max 2

d ) times, in the worst case.
maxL

2. The number of steps needed to evaluate the four flags:

LCLet sonCk)), RRCIeJtsonCPO), LRCLeftsonCk)_), and

RLCieftsorCh)). are, at the most, four times as many as

are required to evaluate a single flag e. g.

LLC LeftsonC?0)).

3. In light of C1) and C2), the maximum number of steps

needed to find LLCK) will be 4Cd - d ) as many as
mnax2 rnax i

required to fin' the flag LLCieftsonCK)_). In order to

find if a dilated-mapping of treel exists onto Lree2, the

maximum number of steps will be 4Cd - d ) times asrnax2 maxi

many as are required to find LLCLeftsonCrootl,). Similarly

the number of steps needed to find LLCdeftsonCrootl ) will
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again be 4Cd - d ) times as mrny as are required to
mnaxZ rnaxi

evaluate the flag LLCLeitsorLCteitsonCrootl))), Thus, in

order to find if a dilated-mapping of treel exists onto

tree2, the algorithm will perform steps proportional to

d d
OCCd -d M maxi xC4. Xi)

rnax2 maxl

3. 6. EXAMPLE 1

We show treel in Fig. 2Ca) and trees in Fig. 2Cb), with

the root node of each tree shown in bold. Note that d =7,max2

and d =4. The depth of some of the nodes of treel is also

indicated in Fig. 2Ca). A trivial mapping of treel onto tree2

is shown in Fig. 3Cb). In this mapping rootl is mapped onto

root2 and the leftson Crightson) of each node i is mapped onto

the leftson Crightson) of the imageCt) of tree2.

For each non leaf node q of treel at depth=3, the flags,

LLCq), RRCq-), LRCq), and RLCq) are determined by inspection

and are indicated with each node in the respective order (Fig.

3Ca)). Thus for q=15, all the four flags are true and are

indicated by the pattern '1111', while for q=8, both LLCq-) and

RLCq-) are trtue but RRCq-) and LRCq) are both false and are

indicated by the combination '1001', as shown in Fig. 3CbD.

As the four flags for node q=15 are all tr'ue and q is the

rightson of node 7, so, according to Theorem 1, RRC7.) is also

true. Thus LLC7-) and RRC7) are both true as indicated in Fig.

3Ca). The four flags for node 8, which is the leftson of node

4, are also indicated in the figure. Under such conditions the

flag LLC4) is faise if the edgeC4, leftsonC4)) is not dilated,

but may become true if the edge is allowed to be dilated Cnote

that the flag dilate-left is true ). The flag LL(4D does,

indeed, become true when the edgeC4, 8) is dilated as shown in

Fig. 4.
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In order to determine the flags LR and RL for nodes 4

and 7, the left tree of each ,lode is interchanged with the

right tree, as shown in Fig. 5. The flag LRC4) is faLse if the

edgeC4, 8) is not dilated, but may become true if it is

dilated towards right as the flag dilate-right is true Csee

Fig. 5Cb)). The LRC4) comes out to be false, as shown in Fig.

6. The four flags for nodes 2 and 3 are indicated in Fig. 7.

In order to find LLCrootl), the edgeCl, 2) is dilated various

times, as shown in Fig. 8, 9, 10, and 11. Both the flags

LLCrootLI) and RRCrootli) come out to be true as indicated in

Fig. 12. Thus, it is possible to find a dilated-mapping of

Lreel onto tree2.
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4. APPLICATIONS

Definitions:

di ated-mappineCk_ is a dilated-mapping of a given binary

tree onto a target binary tree in which

the dilation-cost is equal to or less

than ft. Remember, that the expansion-cost

of a dilated-mapping is always zero. A

di 1 ated-mappi ngC k ) is called a minimal1

dilated-mapping if it is not possible to

find a dilated-mappingC k) with k < k .2 2 1

super-tree is a binary tree with respect to a set of

binary trees Cknown as a tree set) if it

is possible to find a dilated-mapping of

each binary tree of the set onto it. A

super-tree containing k nodes is a

minimal super-tree 4.f it is not possible

to find a super-tree having nodes less

than k.

best -Mapp n'6ch) is a mapping of the nodes of a given

binary tree onto the nodes of a target

binary tree under the following

constraints:

1. The root of the given binary tree is

assigned to the root of the target

binary tree.

2. Each sonCiD, in the given binary

tree, is assigned onto a

descendentCimageC iDD in the target

binary tree. Note that the

descendentCimageCt)) may or may not

exi st.
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3. The expansion-cost is minimal and the

dilation-cost is less than or equal to

h~.

4. 1. FINDING A MINIMAL DILATED-MAPPING

If a dilated-mapping of treel onto tree2 exists wherein

each edge of treel is dilated by no more than h times, then

the algorithm of Section 3 will always find a

dilated-mappingCh:). The value of X may vary from zero, when it

is possible to find a mapping of treel onto tree2 without any

dilation, and to Cd - d ), when the amount of dilation
maX2 maxi

is maximum. The minimal dilated-mapping can be found by making

a binary search in the range 0<5<'5Cd - d ), using the
mn~x2 rncax±

algorithm of Section 3 to find the dilated-mappingk) fc-r

which k is minimum.

4. 2. FINDING A MINIMAL SUPER TREE

The problem of finding a minimal super-tree with respect

to a set of binary trees, is difficult to solve in general. In

practical situations, however, it. is possible to find a

minimal super-tree using the algorithm described in Section 3

as follows: We enumerate all non isomorphic rooted binary

trees of a given depth. For each such binary tree, we check if

it is possible to find a dilated-mapping of each member binary

tree of the tree set onto the selected binary tree. The binary

tree which passes this test and which contains minimum number

of nodes, will be the minimal super-tree with respect to the

tree-set.

Unfortunately, the number of non isomorphic rooted binary

trees is prohibitively large for depths of any practical

interest. A practical implementation of a super-tree on a
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printed circuit board, however, imposes further constraints on

the structure of the super-tree and limits the number of non

isomorphic rooted binary trees. A printed circuit board, for

example, is usually stuctured in the form of a NxN grid, where

each node of the super-tree is mapped onto a grid point.

Keeping in view the complexity, size, and input-output

requirements of each node of the super-tree Ci. e. the ALU

pipeline), the value of N is no larger than 10, provided the

super-tree is implemented on a single printed circuit board.

Out of the resulting non isomorphic rooted binary trees, the

minimal super-tree can be found in a reasonable amount of

time. In a NxN grid, for example, the number of chips at

depth=d, are proportional to d and the total number of nodes

in a binary tree will be OCd). The resulting number of

nonisomorphic binary trees will be an exponential function of

the size of the grid which is N2.

4. 3. FINDING A BEST-MAPPING

We have already di scussed techniques to find a

dilated-mapping Cprovided such a mapping exists) of a given

binary tree onto a target binary tree with minimum

dilation-cost Cremember that the expansion-cost of a

dilated-mapping is always zero). If such a mapping does not

exist, or if its dilation-cost is prohibitively large, then we

are left with the only option of finding a best-mappingCh) of

the given binary tree onto the target binary tree. Note, that

the best-mappingChD has a minimal expansion-cost and a

dilation-cost equal to or less than k.

The algorithm that we describe here, can be used to find

best-mappings of a binary tree onto another binary tree with

varying dilation-costs and expansion-costs. We show that i'_ is

possible to minimize one of these costs only at the expense of
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increase in the other. Using this information, one can find

the best possible compromise between these two costs.

Def i ni ti ons:_

BLL(it) is the expansion-cost of the best-mapping of

the left treeCL) onto the left

tree~imageCID_).

BRRCi_) is the expansion-cost of the best-mapping of

the right tr-eeCt) onto the right

treeC imageC D _).

BLRCi-) is the expansion-cost of the best-mapping of

the left treeC 0 onto the right

t reeC imageC t>) ).

BRLCt_) is the expansion-cost of the best-mapping of

the r ight treeCt) onto the left

t reeC imageC i-D.

dt.Late-IeftCi_) is true if it is impossible to determine the

best -mappi ngC RD of left treeC0) onto the

left treeCimage( L)) unless the edge~i,

leftsoniCiDD is dilated and the left treeC0

is mapped onto the left

tree( 1ef tsonC imageC iD:)).

~jLa~ert~f~LL) is true if it is impossible to determine the

best,-mapping(h:) of left treeCiO onto the

l eft, treeCimageCit)) unless the edgeCL,

leftsonCt)) is dilated and the left treeC)

is mapped onto the right

treeCleftsonCimageC0 ID.

THEOREM 4

The flag dilate-leftCt) is true if and only if:

BRLCIeltson(iD)) < BRRCLeftsonCiX) and

BLLCieJtsonrL)) <BLietot)



The flag dilate-rightCiD is true if and only if:

BRLC L eJtsor&i ).) > BRRC L eJtsorC i ) ) and

BLLCLeJtsonCLD) > BLRCLeftsor~iD)'

Proof

If [BLLC1ejtsonC.)) + BRLCLeftson~t))) is less than

(BLLCief tson<ct_)) + BRRC tef tsoaC i-) -) as well as

[BLRCtejtsoiCL)) + BRLCLeftsonCL)]), then it is not possible

to find a best-mappingCkD of the left treeCL) onto the left

treeCimageCiDD unless the edgeCt, leftson(C)) is dilated and

left treeCt) is mapped onto the left treeCleftsonCirnageCL))).

Under such conditions, there always exist a possiblity of

reducing the expansion-cost of a mapping of left treeCL) onto

the left treeCimageCO)), provided the edgeCi, leftsonC0)) is

dilated. o

The conditions under which the fl lag

dilate-leftCL)Z/dilate-rightCi) is true or fatse are,

illustrated in Table 2. It is important to note that only one

flag i. e. dilate-left or dilate-right is tr'ue at a time.

THEOREM 5

BLL~i-) = BLL~leftsonCOD.) + BRRCleftsonCO.) if

YRLCleftsonC0)) 2 BRR:l ef tsonC OD

and BLLCleftsonCO)) :5 BLRCl ef tsonC 0)

= BLRCl ef tsonC 0)) + BRL'l ef tsonC 0 ) i f

BRL<'leftsonC0D) :5 BRRCleftsonCt))

and BLL('loftsonC0)) ! BL R'l ef ts onC ))

Proof

if I BRLC1 ef tsonCt)0 BRRCl1ef t qon C K) ) I and

(BLL~leftsonC0)) :5 BLR~leftsonCO))) or (BRL(leftsonC0)) <5

RRRCleftsonC0) and (BLL('leftsonCi).) : BLRCleftsonC0) then



dilate-leftCL) and dilate-rightCi) are both faLse, as shown in

Table 2. Under such conditions, it is possible to determine

the best-mappingC:)) of the left treeC0t onto the left

treeCimageCiD) without dilating the edgeCi, leftsonC). The

expansion-cost of the best-mappingGOD of the left treeCi) onto

left treeCimageCt)) is given below.o

expansion-cost = min[ RLLCKIltsonC_)) + BRR'CleftsonCi.)M,

[BLRCleftsonCi)) + BRLCleftsonCt)_))]

THE ALGORITHM

The algorithm to find a best-mappingCk) of a given binary

tree onto a target binary tree, is similar to the algorithm

described in Section 3. 4, except that the variables BLL, BRR,

BLR, and BRL are no longer true or facse. but are integers.

Given BLLCleftsonCiD.), BRRCleftsonCL)), BLRCleftsonCli)), and

BRLCleftsonC 0), we can find BLLCL) using Table 2 _ provided

dilate-leftCiD and dilate-rightCi) are both fatse. Dilate Cbut

not more than h times) the edgeCi, leftsonCti) and assign the

left treeCt) onto the left treeCleftsonCimageCi)))_ if

dilate-left is t rue, and onto the right

treeCleftsonCimageCt0), if dilate-right is true.

The rest of the algorithm is exactly the same as

described before. The expansion-cost of the best-mappingCk3 of

the given binary tree onto the target binary tree, will be

min[ BiCl eftsonCroot))+ BRRCleftsonCroot.))],

[BLRCleftsonCroot)) + BRLCleftsonCroot))] ] . The algorithm

performs the same number of steps as before in order to find

the best-mappingCk) of a given binary tree onto a target

binary tree
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TABLE 2

BLLCi> dl Lx

BLLCj*)=BLRCj BRL~j )=BRRCj*) BLLCj')+BRRC3') 0 0

BLLCj-)=BLRCj') BRLC3').>BRRCJ') BL L C J) + RRCJ-) 0 0

BLLCj)=BLRC3*) BRLCJ') <BRRCI*) BLRCI*) +BRLCj*) 0 0

BLLC3')>BLRCj) BRLCj*)=BRRCI) BLRCJ')+BRL(J') 0 0

_7LJ) > BLRC J) RRLC3*)>BRRCJ')01

BLLC3')>BLRj) BRLCI>C)BRRCI*) I3LRC3*)'BR'LCj.) 0 0

BLLCj.)<BLRCJ) BRLCj')=BRRC3') RLLCj')+BRRC3j) 0 0

BLL(j')<BLR(j-) BRLC3j)>BRRC3j) BLL CJ-) +BRRC J 0 0

BL LCJ ) <BL RC.') BRL CJ-) <RRRC3') 910

jileftsoncit) dL=ditate-LeftLt) drzdtate-riehL(L-)
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EXAMPLE 2

Let us find a best-mappingCk of treel of Fig. 2Ca) onto

tree2 of Fig. 2Cb) for k = 0, 1, 2, anJ 3. Fig. 13 shows a

best-mappingC0) of treel onto tree62. The values of BLL, BRR,

BLR, and BRL are all indicated with some nodes in the

respective order. The expansion-cost of the best-mappingCO) is

shown to be 7. We show a best-mappingCl) of treel onto tree2

in Fig. 14. The expansion-cost of this mapping is only 1. A

best-mappi ngC 2) of treel onto tree2 does not produce any

better results and is, therefore, not shown. A best-mappingC3)

is shown in Fig. 12. Its expansion-cost is zero and thus it is

a dllated-mappingC3D of treel onto tree2.

The above expansion-costs and corresponding

dilation-costs are plotted in Fig. 15. Note that when the

dilation-cost is zero, the expansion-cost is maximum and is

equal to 7. On the other extreme, when the dilation-cost is 3,

the expansion-cost is minimum equal to zero. When the

dilation-cost is allowed to increase from zero to 1, the

expansion-cost reduces dramatically from 7 to 1, but when the

dilation-cost is changed from 1 to 2, the expansion-cost does

not reduce.

The best possible compromise between dilation-cost and

expansion-cost can now be found. For example, if the

expansi on-cost, corresponding to dilation-cost=O, is

unacceptable, and if the dilation-cost corresponding to

expansion-cost=0, is prohibitively large, then the best

solution is to allow a dilation-cost of not more than 1. The

corresponding expansion-cost will also be I in this example.
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5. CONCLUSIONS.

We have described an algorithm which can be used to find

a mapping of a given binary tree onto a target binary tree,

provided that the son of a node of the given binary tree is

assigned to a descendent of the image of that node in the

tar-get binary tree. The cost of the mopping is expressed in

terms of dilation-cost and expansion-cost. We have shown that

it is possible to minimize one cost of mapping only at the

expense of increase in the other. It is possible to extend

this approach for k-ary trees Cprovided k is small), although

it will be difficult to apply this technique to graphs other

than trees.

An scheme to find a minimal super-tree which contains an

arbitrary number of binary trees, is also discussed. This

scheme is feasible, provided we impose certain restrictions on

the structure of the super-tree.

The algorithm that we have described in this paper, is

equally applicable in a parallel processing environment. The

problem here is to add minimum number of processors to the

already configured processor tree, in order to match the

program binary tree with the machine architecture. If,

however, the change of hardware is not a feasible option, Chen

we should assign more than one program nodes to a processor

node so that the reduced program binary tree can nicely fit

the intended tree machine. The problem, in general, is

difficult to solve and is an open challenge for people working

in this field.
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image(i)

rlghtson(i)

lef tson(mage()) rightson (image ())

grandson (iage (I/' grandson (image (I))

Fig. I A given binary tree shown in black while the target binary tree

is shown in grey. Node i of the given binary tree is mapped onto

an image(i) of the target binary tree. In a dilated-mapping of a

binary tree onto another binary tree, each son(i) is mapped onto

either an existing son or a descendent (e. g. a grandson) of image(i)

in the target binary tree.
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(a) 21 1

16141 17[41 18[41 194 20[41

(b)

Fig. 2 (a) tree I and (b) tree2. The root node of each binary tree

is shown in bold. The depth of some nodes of tree I is also

indicated in square brackets, thus depth of node 5 is 2.
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(a) 2 3

457

10 1112 13 14

16 17 18 19 20

(b)

Fig. 3 (a) tree I & (b) a trivial mapping of tree I onto tree2. For each

nonleaf node q of tree I at depth=3 the flags LL, RR, LR, & RL

are indicated with each node In the respective order. When q

is equal to 8, for example, LL & RL are both true while RR & LR

are false as indicated in (a).
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(a)

-4 
7

16 17 18 12

Fig. 4~ The flag LL(4) Is false if the edge(4, 8) Is not dilated but becomes

true when the edge Is dilated towards left once as shown in bold

in (b). The flag RR(4 is already true.
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(a)2

16 17 1

(b~)

Fig. 5 In order to determine the flags: LR & RL for nodes 4 & 7, we

interchange the left tree of each node with i ts right tree as shown

In (b). Thp flag LR(4 is false if the edge(4, 8) is not dilM' td but may

become Irue if it is dilated towards right.
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*(a) o-0-

110 45 67ll

16 17 1819 2

Fig. G.. The edge (4,8) is dilated towards right once, Indicated in bold,

as shown in (b). The resulting value of the flag LR (4) Is false

as shown in (a).
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(a) 10101

16 1718 l20

(b)

Fig. 7/ The four flags: LL, RR, LR, & RL for nodes 4, 5, 6 and 7 are

indicated In the respective order In (b). The resulting four

flags for nodes 2 and 3 are shown in (a).
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(a)

011

16 17181' 2

(b)

Fig. a In order to determine the flag LL(root 1)/RR (rootl1) the

edge( 1,2)/(edge( 1,3)) Is dilated as shown in b~old in (b).
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(a)

16 17 1819 2

(b)

Fig. 9 The flags LL and RR for nodes 4 as well as 7, are both true as

shown in (a). The actual dilated-mapping is shown in (b) with

each dilated edge Indicated In bold.
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(a)101lt

11111213 1

16 17 1819 2

(b)

Fig. 10 All the four flags: LL(3) RR(3), LR(3), & RL(3) are shown in (a).

The dilated-mapping for the right tree of node I is shown in (b).



35

16, 17 1 9 2

(b)

Fig. 11 The edge( 1, 2) is dilated thrice as shown in (b). The flag LL(2) is

thus false while RR(2) Is true as indicated in (a).
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(a) 0/' 'lilt

16 17 18 19 20

(b)

Fig. 12 Both LL(root) and RR(root) are true as shown in (a). Thus

it Is possible to find a dilated-mapping of Lre, I onto tre2

which 1,, shown in (b).
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10105 7

16 17 1819 2

Fig. 13 A best-mapping(O) of tree 1 onto tree2. The values of BLL, BRR, BLR,

& BRL are also indicated with some nodes in the resDective urder in

(a). The expansion-cost of the mapping is 7.
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(a)

16 17 1 9 2

(b)

Fig. 14f A best-mapplng( 1) of tree 1 onto txee2. Eachi dilated edge is shown

in bold. The expansion-cost of the best-mnapplng( 1) is 1.
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Dfiation -cost

0 2 34

Fig. 15 Expansion-cost corresponding to best-mapping(k) of tree 1

onto tree2, is plotted against dilation-cost.
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